機器視覺系統的組成
機器視覺系統是指用計算機來實現人的視覺功能,也就是用計算機來實現對客觀的三維世界的識別。按現在的理解,人類視覺系統的感受部分是視網膜,它是一個三維采樣系統。三維物體的可見部分投影到網膜上,人們按照投影到視網膜上的二維的像來對該物體進行三維理解。所謂三維理解是指對被觀察對象的形狀、尺寸、離開觀察點的距離、質地和運動特征(方向和速度)等的理解。
機器視覺系統的輸入裝置可以是攝像機、轉鼓等,它們都把三維的影像作為輸入源,即輸入計算機的就是三維管觀世界的二維投影。如果把三維客觀世界到二維投影像看作是一種正變換的話,則機器視覺系統所要做的是從這種二維投影圖像到三維客觀世界的逆變換,也就是根據這種二維投影圖像去重建三維的客觀世界。
機器視覺系統主要由三部分組成:圖像的獲取、圖像的處理和分析、輸出或顯示。
那么,機器視覺系統設計的難點都有哪些?本文主要總結了一下五點,
第一:打光的穩定性
工業視覺應用一般分成四大類:定位、測量、檢測和識別,其中測量對光照的穩定性要求最高,因為光照只要發生10-20%的變化,測量結果將可能偏差出1-2個像素,這不是軟件的問題,這是光照變化,導致了圖像上邊緣位置發生了變化,即使再厲害的軟件也解決不了問題,必須從系統設計的角度,排除環境光的干擾,同時要保證主動照明光源的發光穩定性。當然通過硬件相機分辨率的提升也是提高精度,抗環境干擾的一種辦法了。比如之前的相機對應物空間尺寸是1個像素10um,而通過提升分辨率后變成 1個像素5um,精度近似可以認為提升1倍,對環境的干擾自然增強了。
第二:工件位置的不一致性
一般做測量的項目,無論是離線檢測,還是在線檢測,只要是全自動化的檢測設備,首先做的第一步工作都是要能找到待測目標物。每次待測目標物出現在拍攝視場中時,要能精確知道待測目標物在哪里,即使你使用一些機械夾具等,也不能特別高精度保證待測目標物每次都出現在同一位置的,這就需要用到定位功能,如果定位不準確,可能測量工具出現的位置就不準確,測量結果有時會有較大偏差
第三:標定
一般在高精度測量時需要做以下幾個標定,一光學畸變標定(如果您不是用的軟件鏡頭,一般都必須標定),二投影畸變的標定,也就是因為您安裝位置誤差代表的圖像畸變校正,三物像空間的標定,也就是具體算出每個像素對應物空間的尺寸。
不過目前的標定算法都是基于平面的標定,如果待測量的物理不是平面的,標定就會需要作一些特種算法來處理,通常的標定算法是解決不了的。
此外有些標定,因為不方面使用標定板,也必須設計特殊的標定方法,因此標定不一定能通過軟件中已有的標定算法全部解決。
第四:物體的運動速度
如果被測量的物體不是靜止的,而是在運動狀態,那么一定要考慮運動模糊對圖像精度(模糊像素=物體運動速度*相機曝光時間),這也不是軟件能夠解決的。
第五:軟件的測量精度
在測量應用中軟件的精度只能按照1/2—1/4個像素考慮,最好按照1/2,而不能向定位應用一樣達到1/10-1/30個像素精度,因為測量應用中軟件能夠從圖像上提取的特征點非常少。